Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613709

RESUMO

A novel reaction-based ratiometric fluorescent probe 1 for Cu2+ using picolinate as the reaction site and hemicyanine as the fluorophore was developed. 1 displayed maximum absorption peak at 355 nm and fluorescence emission peak at 500 nm, with large Stokes shift of 145 nm. Upon reaction with Cu2+, the maximum absorption and fluorescence emission peaks red-shifted to 390 nm and 570 nm respectively, owing to Cu2+-induced hydrolysis of the picolinate moiety in 1. Meanwhile, the solution of 1 turned from green to orange under a 365 nm UV lamp. 1 not only could detect Cu2+ ratiometrically by the ratios of both absorbance (A390 nm/A355 nm) and fluorescence intensity (F570 nm/F500 nm), but also displayed large Stokes shift, fast response, high sensitivity and excellent selectivity over other metal ions in neat aqueous solution.

2.
Analyst ; 148(23): 5882-5888, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37917054

RESUMO

A novel mitochondrion-targeted Hg2+-specific fluorescent probe 1 based on ESIPT phthalimide was designed and synthesized for the first time. Owing to the blockage of the ESIPT process between the hydroxy group and the carbonyl oxygen of the imide by the diphenylphosphinothioate group, 1 was almost nonfluorescent. After reacting with Hg2+, 1 exhibited a dramatic fluorescence enhancement due to the recovery of the ESIPT process through Hg2+-induced desulfurization-hydrolysis of the diphenylphosphinothioate moiety and the cleavage of the P-O bond. 1 showed a large Stokes shift, rapid response and high sensitivity and selectivity for Hg2+ over other metal ions. Moreover, 1 was successfully employed to image Hg2+ in the mitochondria of living cells.


Assuntos
Corantes Fluorescentes , Mercúrio , Ftalimidas , Mitocôndrias
3.
J Fluoresc ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987982

RESUMO

A novel reaction-based fluorescent probe 1 for Hg2+ was designed and synthesized. 1 was almost nonfluoresent due to inhibition of the ESIPT process between hydroxy group and imid carbonyl oxygen by diphenylphosphinothioate group. After reacting with Hg2+, the fluorescence intensity of 1 exhibited significant enhancement owing to recovery of the ESIPT process via Hg2+-promoted desulfurization-hydrolysis of the diphenylphosphinothioate moiety and cleavage of the P-O bond. 1 not only showed rapid response, high sensitivity, excellent selectivity for Hg2+ over other metal ions, but also could detect Hg2+ with large Stokes shift (165 nm), which was attributed to the ESIPT process. Moreover, the reaction mechanism was fully validated by absorption spectra, fluorescence spectra, fluorescence color as well as ESI-MS analysis. 1 is the reaction-based ESIPT fluorescent probe for the detection of Hg2+ with large Stokes shift, rapid response, high sensitivity and selectivity.

4.
Anal Chim Acta ; 1058: 136-145, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-30851847

RESUMO

Based on conjugate addition-cyclization reaction of Cys with acrylate and subsequent 1,6-elimination of p-hydroxybenzyl moiety, a novel colorimetric and ratiometric fluorescent probe 1 was designed and synthesized. Upon addition of Cys to the solution of 1, the absorption spectra changed from 508 nm to 452 nm (Δ56 nm) and afforded visible color change from pink to yellow. Meanwhile, the emission spectra shifted from 644 nm to 539 nm (Δ105 nm) with remarkable changes in the emission ratio of F539 nm/F644 nm (R/R0 up to 760-fold), accompanying with an obvious fluorescence change from orange to green under illumination with a 365 nm UV lamp. In addition, 1 exhibited a large Stokes shift (136 nm), high sensitivity (detection limit of 46.7 nM), and excellent selectivity to Cys over Hcy and GSH. Moreover, 1 can discriminate Cys from Hcy and GSH by fluorescence spectra, even obvious visible and fluorescence color changes. Importantly, 1 can be used to image Cys in living cells by dual emission channels.


Assuntos
Acrilatos/química , Cumarínicos/química , Cisteína/análise , Corantes Fluorescentes/química , Acrilatos/síntese química , Acrilatos/toxicidade , Colorimetria/métodos , Cumarínicos/síntese química , Cumarínicos/toxicidade , Ciclização , Cisteína/química , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Limite de Detecção , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...